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The phase-resetting curve �PRC� describes the response of a neural oscillator to small perturbations in
membrane potential. Its usefulness for predicting the dynamics of weakly coupled deterministic networks has
been well characterized. However, the inputs to real neurons may often be more accurately described as
barrages of synaptic noise. Effective connectivity between cells may thus arise in the form of correlations
between the noisy input streams. We use constrained optimization and perturbation methods to prove that the
PRC shape determines susceptibility to synchrony among otherwise uncoupled noise-driven neural oscillators.
PRCs can be placed into two general categories: type-I PRCs are non-negative, while type-II PRCs have a
large negative region. Here we show that oscillators with type-II PRCs receiving common noisy input syn-
chronize more readily than those with type-I PRCs.
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I. INTRODUCTION

Synchronous oscillations are found in many brain areas
and are responsible for macroscopic electrical responses of
the brain including field potentials and EEG signals. Within a
single brain area, synchronization of neuronal activity serves
to amplify signals to upstream regions �1�, while synchroni-
zation across different areas may allow activity to be selec-
tively routed.

Considerable theoretical interest has recently emerged in
the generation of synchrony by correlated noisy inputs to
uncoupled oscillators �2–5�, a phenomenon we will refer to
as stochastic synchrony. In the brain, stochastic synchrony
may account for observations such as long-range synchroni-
zation �6,7�, which are difficult to explain by the presence of
synaptic connectivity alone. Moreover, noisy inputs have
been shown to synchronize real neurons in vitro �8�.

The key component in the study of noisy oscillators is the
phase-resetting curve �PRC�. This curve characterizes how
inputs to an oscillator shift its timing or phase. In the context
of neurons, spike times are believed to play an important role
in coding and in the propagation of information across brain
regions. Thus, the PRC provides a quantitative characteriza-
tion of how inputs to neural oscillators alter the timing of
spikes.

The theory of deterministic oscillators has shown that the
type of bifurcation from steady state to periodic behavior
determines the shape of the PRC. Weak-coupling theory
shows that the form of the interaction between oscillators
together with their intrinsic response �the PRC� provide suf-
ficient information about the ability of the coupling to syn-
chronize �or desynchronize� the oscillations. For very fast
excitatory synaptic interactions, type-II oscillators character-
ized by the Hopf bifurcation synchronize more readily than
type-I oscillators characterized by the saddle-node-on-an-
invariant-circle �SNIC� bifurcation �9–12�. This difference in
ability to synchronize with excitatory coupling is a conse-
quence of the shape of the PRC occurring near the two dif-
ferent bifurcations. A PRC which contains both negative and
positive lobes can allow inputs to both slow down the oscil-
lator which is ahead and speed up the oscillator which is

behind. In contrast, a non-negative PRC can only speed up
the timing of both oscillators so that synchronization be-
comes more difficult. Several authors �10,13,14� have shown
that the PRC near a SNIC is non-negative and approximately
proportional to 1−cos t, while the PRC near a Hopf is pro-
portional to sin�t+��. Thus, type-II PRCs have a large nega-
tive lobe, whereas type-I PRCs are strictly positive.

Two recent papers have shown that type-II PRCs are bet-
ter than type-I PRCs at synchronizing uncoupled oscillators
with correlated input �15,16�. That is, for a given input cor-
relation of the noisy stimulus, the output correlation of the
oscillators is higher with type-II than with type-I PRCs. In
these two papers, specific functions for PRCs were checked
�namely, sin�t� and 1−cos�t��, and the correlations and de-
gree of synchrony were analytically and numerically com-
puted. However, it is not known whether there are other PRC
shapes that might produce even stronger stochastic synchro-
nization.

The easiest way to quantify stochastic synchrony is to
examine the Lyapunov exponent, the rate at which two os-
cillators receiving identical inputs converge to synchrony. In
this paper we will explore how this quantity depends on the
shape of the PRC. In particular, we find that type-II PRCs
lead to faster convergence than type-I PRCs, and we use
variational principles to determine the optimal shape of the
PRC to maximize this convergence.

First in Sec. I we introduce the phase reduction of a sto-
chastically driven neural oscillator using the Itô change of
variables, and in Sec. II we derive the Lyapunov exponent
for two such oscillators receiving common noise. Next we
use the Fokker-Planck equation in Sec. III to obtain the prob-
ability distribution of the phase of a noise-driven neural os-
cillator. The Euler-Lagrange method for constrained optimi-
zation allows us in Sec. IV to find the PRC that minimizes
the Lyapunov exponent. This leads to a fourth-order system
of nonlinear differential equations, which we approximate to
an arbitrary order of accuracy using regular perturbations in
Sec. V. The resulting approximation shows that a type-II
PRC achieves the minimal Lyapunov exponent, hence pro-
ducing more robust convergence to synchrony than a type-I
PRC. Several interesting cases that arise as a function of the
constraint parameters are discussed in Sec. VI. Finally in
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Sec. VII we show that numerical solution of the fourth-order
system agrees with the perturbation-derived approximation.

II. ITÔ PHASE REDUCTION

Consider a neural oscillator with additive white noise de-
scribed by the stochastic differential equation

dX = F�X�dt + �MdW , �1�

where F�X� represents the deterministic equations of motion,
� is the amplitude of the noise, M is a constant matrix, and
dW is a vector of Gaussian white noise. Note that for a
general limit-cycle oscillator, there need be no constraints
on the entries of M. For neural models however, the noise
typically occurs in current felt by the neuron, and this cur-
rent appears only in the voltage component of the determin-
istic model. Without loss of generality, we take the voltage
to be the first component. Thus, we will assume here that M
has all zero entries except for the �1,1� element, which is
identically 1.

The phase reduction method �2� applied to Eq. �1� gives a
stochastic differential equation for the evolution of the oscil-
lator’s phase:

d� = dt + �����dW , �2�

where we have assumed without loss of generality that the
intrinsic frequency of the oscillator is �=1, and dW is now a
scalar white noise process. Here � is the infinitesimal phase
response curve defined by

���� ª �X��X=X0���,

where X0��� is the unperturbed limit-cycle solution of the

deterministic equation Ẋ=F�X�. See Kuramoto �17�, pages
26 and 27.

It is now important to note that the usual phase reduction
method uses the conventional change of variables so Eq. �2�
must be regarded as a Stratonovich differential equation
�2,18�. To eliminate the correlation between � and the white
noise �=dW, we must apply Itô’s lemma to obtain an equiva-
lent but analytically more convenient formulation

d� = �1 +
�2

2
����������dt + �����dW , �3�

where � denotes �
�� . In a recent paper, Yoshimura and Arai

�19� show that Eq. �3� is incomplete and that another term
must be added in the case where the noise is strictly white.
However, more recently �in preparation� we show that the
correct reduction is more subtle, and under some reasonable
circumstances the additional term can be made arbitrarily
small. Thus we will stay with the conventional phase-
reduced model as first proposed by Teramae and Tanaka �2�.

III. LYAPUNOV EXPONENT

As a standard measure of susceptibility to synchrony, we
will now derive the Lyapunov exponent for two identical
uncoupled neural oscillators receiving common additive
white noise. The resulting analysis, however, applies equally

well to an arbitrary number of identical noninteracting oscil-
lators.

This approach is made possible by the pioneering work of
Oseledec �20�, who showed that Lyapunov theory applies in
the stochastic setting. For a survey of the results, see �21,22�.

Let us define the phase difference �ª�2−�1, where �1
and �2 each obey Eq. �3�. Linearizing around the synchro-
nous state �=0, we obtain as in �2�

d� =
�2

2
������������dt + ���������dW ,

where � obeys Eq. �3� as well. Since the Lyapunov exponent
is defined as �ª limt→	

log���t��
t , let us make the change of

variables yª log���. Once again we invoke Itô’s lemma, and
after simplification we find that y satisfies the stochastic dif-
ferential equation

dy =
�2

2
�����dt + ���dW .

Next we integrate, divide by t, and take the limit as t→	 to
obtain an expression for �,

� = lim
t→	

y�t�
t

= lim
t→	

�2

2t
�

0

t

�����s������s��ds +
�

t
�

0

t

�����s��dW�s� .

Assuming the system is ergodic, we can replace the long
time average on the right-hand side with the spatial or en-
semble average. Due to the Itô change of variables, the last
term drops out leaving

� =
�2

2
�

0

1

���������P���d� , �4�

where P��� is the steady-state distribution of the phase.
Note that Teramae and Tanaka derive an expression for �

in �2� by making the approximation P���=1. Substituting
this value into Eq. �4� and performing integration by parts,
they obtain

� 	 −
�2

2
�

0

1

�������2d� .

In this paper, however, we wish to retain the generality of
P��� as discussed below.

IV. STEADY-STATE PHASE DISTRIBUTION

In order to evaluate the Lyapunov exponent, we need to
obtain the stationary density of the phase when perturbed by
noise. Series expansion of the stationary density was origi-
nally developed by Khasminskii �23�; for discussion see also
�21,22�. In a recent paper, Teramae and Tanaka �2� treated
the density as uniform, which is correct for weak noise.
However our subsequent perturbation analysis will require
higher-order terms, so we will need to derive a more accurate
value for the steady-state phase distribution.
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By applying the Fokker-Planck equation to Eq. �3�, we
obtain after simplification a partial differential equation for
the probability distribution P�� , t�:

�P

�t
= −

�P

��
+

�2

2

�

��
��

���P�
��

� .

Now we may set �P
�t =0 to find the steady state, then integrate

once with respect to � to obtain

− J = − P +
�2

2
��

���P�
��

� , �5�

where −J is a constant of integration. We require that P�0�
= P�1� and that the solution be normalized, namely,

0

1P���d�=1. Note that the equations are singular since ����
generally vanishes at several places, in particular at �=0,1.
In the Appendix below, we prove the existence of the station-
ary density by directly solving the linear equations and tak-
ing appropriate limits.

In the remainder of this section, we use regular perturba-
tion theory to approximate the stationary density for small
noise, 0
��1. To approximate both J and P we substitute

J = 1 + �2J1 + �4J2 + ¯ ,

P��� = 1 + �2P1��� + �4P2��� + ¯

into Eq. �5�. Equating like powers of � gives

− J1 = − P1��� +
1

2
��������� .

Integrating both sides over �0,1� leaves the constant on
the left-hand side unchanged. For the right-hand side, note
that 
0

1P���d�=1, and hence 
0
1P1���d�=0. Furthermore,

���= 1
2

d
d� ��2� so that

J1 = −
1

4
���1�2 − ��0�2� = 0

since � is periodic. Thus we have P1���= 1
2���������.

Similarly,

− J2 = − P2��� +
1

2
����2�����2 +

1

4
����3����� .

Since 
0
1P2���d�=0 as well, we can integrate both sides as

above and use integration by parts to obtain

J2 =
1

4
�

0

1

�����������2d� ,

P2��� =
1

2
����2�����2 +

1

4
����3�����

+
1

4
�

0

1

�����������2d� .

In summary,

J = 1 +
�4

4
�

0

1

�����������2d� ,

P��� = 1 +
�2

2
��������� +

�4

4
�2����2�����2

+ ����3����� + �
0

1

�����������2d�� . �6�

For the perturbation expansions in the next section, it will
suffice to write J=1. We will use Eq. �6� in Sec. VI and for
the numerical verifications in Sec. VII.

V. CONSTRAINED OPTIMIZATION

The Euler-Lagrange variational technique provides a
method for determining the phase resetting curve � that
minimizes the Lyapunov exponent, subject to appropriate
constraints. To ensure smooth solutions and to eliminate un-
informative and biologically implausible higher harmonics
of the optimal solution, we begin by imposing the general
constraint

�
0

1

a������2 + b�������2 + c�������2d� = 1, �7�

where a, b, and c are free parameters. A standard normaliza-
tion has a=1, b=0, and c=0. However, nonzero values of b
and c endow solutions with additional smoothness observed
in naturally occurring PRCs. Constraints on higher deriva-
tives also impose a bound on the amplitude of potentially
optimal solutions. �See Fig. 3.� Otherwise, an arbitrarily
large PRC could produce an arbitrarily negative Lyapunov
exponent. Below we will explore the cases that arise from
specific choices of the constraint parameters.

We proceed by placing Eqs. �4�, �5�, and �7� together with
the approximation J=1 into the Euler-Lagrange formula to
obtain the functional

�
0

1

���P + �1�a�2 + b����2 + c����2 − 1�

+ �2����1 − P +
�2

2
���P���d� = 0, �8�

where �1 is a free parameter and �2��� represents a con-
tinuum of free parameters.

Define the operator

L��� ª ���P + �1�a�2 + b����2 + c����2 − 1�

+ �2����1 − P +
�2

2
���P��� .

The optimal � we seek will satisfy the two equations

�L
��

−
d

d�

�L
���

+
d2

d�2

�L

���
= 0, �9�

�L
�P

−
d

d�

�L
�P�

= 0. �10�

Note that we can write two more Euler-Lagrange equations,
but �L

��1
=0 simply restates Eq. �7�, and �L

��2
=0 returns Eq. �5�

governing P.
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Assuming the parameter c is nonzero, we obtain from
Eqs. �9� and �10� a fourth-order system of ordinary differen-
tial equations:

P�� + 2�P��� + P�� + a��1 − b���1 + c��4��1�

+
1

2
��P��2 − P�2���

2 = 0, �11�

��� − �2 −
1

2
�����2 + ��2���

2 = 0. �12�

If c=0, we will have instead the second-order system which
obtains by setting c=0 in Eq. �11�. When we examine the
effects of varying the constraint parameters in Sec. VI, we
will see that the main result remains the same in this case as
well.

VI. PERTURBATION APPROXIMATION

Let us first consider the fourth-order case where the pa-
rameter c is nonzero.

Assuming the noise amplitude � is sufficiently small, we
write the following expansions:

P��� = P0��� + �2P1��� + ¯ ,

���� = �0��� + �2�1��� + ¯ ,

�1 = �1,0 + �2�1,1 + ¯ ,

�2��� = �2,0��� + �2�2,1��� + ¯ . �13�

Substituting these into Eqs. �11� and �12� and equating
like powers of � gives to lowest order: P0���=1, �2,0���
=�0����0����, and the fourth-order homogeneous equation

a�1,0�0 + �1 − b�1,0��0� + c�1,0�0
�4� = 0. �14�

For convenience let us define the differential operator

J = a�1,0 + �1 − b�1,0�
�2

��2 + c�1,0
�4

��4 .

Thus Eq. �14� becomes J��0�=0, and the first-order correc-
tion �1 obeys the inhomogeneous equation

J��1� = ��0��
3 − b�1,1�0� + �0�a�1,1 + 3�0��0�� + c�1,1�0

�4�.

�15�

Furthermore, substituting expansions �13� into Eq. �7� gives
the corresponding constraints:

�
0

1

a�0
2 + b��0��

2 + c��0��
2 = 1, �16�

�
0

1

a�0�1 + b�0��1� + c�0��1� = 0. �17�

Before solving Eq. �14�, we must first determine the un-
known parameter �1,0. Since we seek only periodic solutions,

we can impose a condition on the characteristic equation of
Eq. �14�:

a�1,0 + �1 − b�1,0�y2 + c�1,0y4 = 0. �18�

Specifically, by requiring that the roots of this polynomial
satisfy y=2i, we determine that

�1,0 =
42

a + 4b2 + 16c4 .

Now we are ready to impose periodic boundary conditions,
and we find that the solution of Eq. �14� is just �0���
=C0 sin�2��. The constant of integration C0 is determined
from constraint �16� so that

C0 = �
2

a + 4b2 + 16c4
.

While both values of C0 will give the same minimal value of
the Lyapunov exponent, we choose the negative value for
biological plausibility. Hence to lowest order we find that the
optimal phase resetting curve is type II:

�0��� = −
2sin�2��

a + 4b2 + 16c4
. �19�

The next order correction does not appreciably change
this result. To obtain the �2 term, we must solve Eq. �15�
subject to Eq. �17�. By the Fredholm alternative, a solution to
the inhomogeneous problem exists if and only if �iff� the
right-hand side of Eq. �15�, call it r���, is orthogonal to the
null space of J�. However, since J is self-adjoint we simply
solve for the value of �1,1 such that

�
0

1

sin�2��r���d� = 0,

namely, �1,1=0.
Imposing periodic boundary conditions on the resulting

equation yields the solution

�1��� = C1 sin�2�� +
2 sin�2��sin�4��

�a − 144c4�a + 4b2 + 16c4
.

As before, we use constraint �17� to obtain C1=0. Hence to
order �2 the optimal phase resetting curve is given by

���� = −
2sin�2��

a + 4b2 + 16c4

+
�2

2

2 sin�2��sin�4��
�a − 144c4�a + 4b2 + 16c4

. �20�

VII. CONSTRAINT PARAMETERS

Let us next explore the influence of the constraint param-
eters a, b, and c, which we will allow to take on the values of
0 or 1. Of the seven nontrivial combinations, one has no
periodic solution at all and is thus inadmissible. Four param-
eter choices give rise to the same optimum already found in
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Eq. �20�, and the two remaining parameter combinations do
not produce a unique solution but instead yield a family of
solutions ranging smoothly from type I to type II. In this
case, we explicitly find the minimizer of � among the family
of solutions.

All of the cases can be analyzed by examining Eq. �18�,
the characteristic equation of L���=0. For example, the case
a=c=0 and b=1 can have no periodic solution since the
polynomial �1−�1,0�y2=0 has no nontrivial roots.

The four parameter combinations that lead to Eq. �20� are
those in which a=1. In these cases we have

�1,0 + �1 − b�1,0�y2 + c�1,0y4 = 0.

If c�0, the polynomial is fourth degree having four distinct
roots; if c=0 the polynomial is quadratic with two distinct
roots. In each case we can set y=2i and solve uniquely for
�1,0 as discussed above.

The case c=0 �while a=1� deserves further attention for
another reason. In this regime, the optimal PRC becomes
sensitive to the noise amplitude � as illustrated in Fig. 1. To
understand why the curve deforms, let us focus on the ex-
trema of Eq. �20�, which are given by the zeros of the de-
rivative:

����� = −
22

a + 4b2 + 16c4�cos�2�� +
�2

a − 144c4

��cos�4��sin�2�� +
1

2
cos�2��sin�4���� .

In this form we clearly see that the unperturbed extrema
�when �=0� occur at �=1 /4 and 3/4, while the deformation
due to noise is on the order of �2 / �a−144c4�. More spe-
cifically, when c�0 this quantity is O��210−4� so that the
weak noise in our model ���1� has negligible effect. How-
ever when c=0, this quantity is O��2� so that even relatively
small magnitude noise can have a noticeable impact on the
shape of the optimal PRC.

Another interesting situation arises in the two cases where
a=0, c=1, and b is arbitrary. Here the characteristic equation
has a double root at y=0:

�1 − b�1,0�y2 + �1,0y4 = 0.

After accounting for the boundary conditions, we have a su-
perposition of two independent solutions

�0��� = C3�1 − cos�2��� + C4 sin�2�� .

Constraint �16� eliminates only one degree of freedom, leav-
ing a family of solutions as candidates for the optimum:

�0��� = K
1 − cos�2��

22�b + 42�
− 1 − K2 sin�2��

22�b + 42�
,

�21�

where the remaining degree of freedom K has been normal-
ized to range between −1 and 1. See Fig. 2.

Combining Eq. �4� for the Lyapunov exponent with Eq.
�6� for the steady-state phase distribution, we insert Eq. �21�
to obtain the following expression:

� = −
1

b + 42 +
�4

4

�4K4 + 10K2 + 1�
42�b + 42�3 ,

where we have set a=0 and c=1. Note that we needed to
carry out the expansion of � to �4 in order to discover the
dependence on K.

Since the derivative of � with respect to K has only one
real root at K=0, where a minimum occurs, the type-II curve
remains the optimal PRC even in this case.

VIII. NUMERICAL VERIFICATION

We would like to independently verify the accuracy of the
optimal PRC Eq. �20� derived via perturbation expansion by

0 0.2 0.4 0.6 0.8 1
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0.3

−0.3

θ

∆(
θ)

σ = 0

σ = 0.05

σ = 0.30

σ = 0.50

FIG. 1. In the case where the second derivative is left uncon-
strained, the optimal PRC deviates from a pure cosine function as
the noise amplitude � increases. Parameters are a=1, b=1, and
c=0.
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∆(
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K = 1.0
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K = 0.0

K = −0.5

K = −1.0

FIG. 2. When the first derivative is unconstrained while the
second derivative is constrained, Euler-Lagrange optimization pro-
duces a family of candidates for the minimizer of the Lyapunov
exponent ranging smoothly from type II to type I as the parameter
K ranges from 0 to 1. For negative K �dashed�, the curves do not
represent biologically plausible PRCs. Parameters are a=0, b=1,
and c=1.
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numerically solving the Euler-Lagrange Eqs. �11� and �12�
with periodic boundary conditions. Unfortunately, the result-
ing system is singular and therefore very difficult to solve
numerically. Instead we substitute the approximation P���
=1+ �2

2 ��������� into the Euler-Lagrange functional �8� to
obtain a new functional

�
0

1

����1 +
�2

2
����������

+ �1�a�2 + b����2 + c����2 − 1�d� = 0,

which gives rise via Eq. �9� to the fourth-order boundary
value problem

��4� =
− 2�� − 2a��1 + 2b���1 − ��33�2 − 3������2

2c�1
.

When c=0, we similarly obtain a second-order boundary
value problem.

Using the numerical integration package XPPAUT, we are
able to achieve excellent agreement with our analytical ap-
proximation. Figure 3 illustrates numerical and analytic so-
lutions in the case where c=1 and where c=0. Note that
imposing a constraint on the second derivative of � results in
an optimal PRC of much smaller magnitude.

In Fig. 4 we find good agreement between the analytic
and numerical results even for the regime in which a=1,
c=0, and PRC shape is sensitive to noise amplitude. The
numerical simulation deforms with increasing � just as the
analytic approximation does.

IX. DISCUSSION

In this paper we have used perturbation theory and the
calculus of variations to analyze the rate at which neurons
can synchronize when subjected to common inputs. We treat
the inputs as noise, that is, as if they are delta-correlated with
no structure. Real neuronal inputs do have correlational

structure, however, so that the expression for the rate of syn-
chronization �the Lyapunov exponent� is more complex. In-
deed, in previous work �15� we have shown that the temporal
characteristics of the noise can also have an effect on how
rapidly neurons synchronize. In that work, we asked the re-
verse question: given a particular PRC, what correlation time
for the noise minimizes the Lyapunov exponent?

Suppose that we use some signal that is not white noise
but still has zero mean and is stationary. Then the phase
satisfies

d�

dt
= 1 + ������t� ,

where ��t� is the input. The Lyapunov exponent is

� ª lim
T→	

1

T
�

0

T

�����t����t�dt .

By using an approximation of ��t� as in �24� we may be able
to obtain a functional for � depending on ��t� and �, and
from this we may apply similar methods to estimate the op-
timal shape of the PRC given the statistics of the inputs.

Optimization has been applied to other aspects of neural
oscillators. Moehlis et al. �25� asked the following question.
Consider the scalar oscillator model

d�

dt
= f��� + ����I�t� .

�Note that if f���=1, we have Eq. �2�, the case considered in
this paper.� Suppose the neuron fired at t=0 and we desire it
to fire again at time T�0. What is the minimum stimulus,
I�t� �which, say, minimizes 
0

TI�t�2dt� to do this? Moehlis et
al. �25� write the Euler-Lagrange equations for this optimi-
zation problem and then assume that I�t� is small in order to
use perturbation methods. A related issue is the “optimal
stimulus” �26� for producing a spike in a neuron, and for
neural oscillators this has been answered in �27�.
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−0.1
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0.1
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∆(
θ)

c=0, numerical

c=0, analytic

c=1, numerical

c=1, analytic

FIG. 3. The magnitude of the optimal PRC depends on the
whether or not the second derivative is constrained. The numerical
solution �open circles� and the analytic result �solid lines� coincide.
Parameters are a=1, b=1, and �=0.05.
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FIG. 4. When the second derivative is unconstrained, the opti-
mal PRC shape deforms with increasing noise. The numerical so-
lution �open circles� and the analytic result �solid lines� are in good
agreement. Parameters are a=1, b=0, and c=0.
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APPENDIX: AN EXISTENCE PROOF

On the interval �0,1�, the phase resetting curve � is nec-
essarily 0 at the end points and possibly at interior points as
well. As a result, we have a singular equation for the steady-
state distribution of phases P, derived earlier as Eq. �5� and
repeated here:

− J = − P +
�2

2
���P��. �A1�

Existence of solutions for first-order linear ordinary differen-
tial equations with isolated singularities of the second kind
are discussed in many classic references; see, for example,
chapter 5 of �28�. For the reader unfamiliar with the general
theory, we include the following direct proof that Eq. �A1�
does indeed have a solution despite the singularities.

Suppose �����0 in the open interval �a ,b�� �0,1�,
while ��a�=��b�=0. In this way, we will be able to apply
our proof to the entire domain �0,1� in a piecewise fashion;
for example, if ��x�=sin�2x�, then a=0 and b=1 /2 or a
=1 /2 and b=1. In the following we will assume, without
loss of generality, that �����0 in �a ,b�.

Let us begin by rewriting the differential equation as an
integral equation. Define Q�x�ª��x�P�x�. Then Eq. �A1�
becomes

Q� −
2Q

�2�2 =
− 2J

�2�
. �A2�

We now introduce an integrating factor; let

z�x� ª −
2

�2�
c

x ds

�2�s�
, �A3�

where c� �a ,b� is fixed. Observe that, as x approaches a
from above we eventually have x
c, and hence z�x� ap-
proaches +	. Likewise, as x approaches b from below, z�x�
approaches −	.

Equation �A2� now becomes

�ez�x�Q�� = −
2J

�2�
ez�x�.

Integrating both sides gives

Q�x� =
2J

�2e−z�x��K − �
c

x ez�t�

��t�
dt� , �A4�

where K is a constant of integration that will be determined
below.

We see from Eq. �A1� that P�a�= P�b�=J. Therefore a
solution exists iff limx→a+ Q�x� /��x�=limx→b− Q�x� /��x�
=J. Let us first consider the right end point and assume for
now that the limit

lim
x→b−

�
c

x ez�t�

��t�
dt = L �A5�

exists. Let us compute

lim
x→b−

Q�x�
��x�

=
2J

�2 lim
x→b−

K − �
c

x
ez�t�

��t�dt

��x�ez�x� ,

and note that when we set K=L, both numerator and denomi-
nator tend to 0 as x→b−. Thus we can use L’Hôpital’s rule
and definition �A3� to obtain

lim
x→b−

Q�x�
��x�

=
2J

�2 lim
x→b−

− ez�x�/��x�
��x�z��x�ez�x� + ���x�ez�x� = J .

�A6�

Now let us return to the assumption we made and observe
that the integral in Eq. �A5� is not improper after all. Rewrit-
ing the integrand of Eq. �A5� such that both numerator and
denominator go to infinity, we can use L’Hôpital’s rule again
to see that the integrand goes to zero:

lim
t→b−

ez�t�

��t�
= lim

t→b−

1/��t�
e−z�t� = lim

t→b−

− ���t�/��t�2

e−z�t�/��t�2 = 0.

The last equality follows since �� is bounded and
limx→b− ez�t�=0. Hence our assumption was justified.

Now let us rewrite Eq. �A4�, incorporating our knowledge
from Eq. �A5�, namely, that K=L:

Q�x� =
2J

�2e−z�x���
c

b ez�t�

��t�
dt − �

c

x ez�t�

��t�
dt�

=
2J

�2e−z�x��
x

b ez�t�

��t�
dt .

It remains to show that limx→a+ Q�x� /��x�=J. We will pre-
pare to use L’Hôpital’s rule once again by writing

lim
x→a+

Q�x�
��x�

=
2J

�2 lim
x→a+

�
x

b
ez�t�

��t�dt

��x�ez�x� . �A7�

Since ez�t� tends to infinity as x approaches a from above, by
L’Hôpital’s rule the denominator of Eq. �A7� also tends to
infinity:

lim
x→a+

ez�x�

1/��x�
= −

2

�2 lim
x→a+

ez�x�/��x�2

���x�/��x�2 = 	 .

The numerator of Eq. �A7� tends to infinity as well since

�
x

b ez�t�

��t�
dt � �

x

b ez�t�

M
dt ,

when M =max���x� :x� �0,1��, and the latter integral is
clearly unbounded as x approaches a. Therefore we can ap-
ply to Eq. �A7� a similar calculation to that in Eq. �A6� and
conclude that limx→a+Q�x� /��x�=J as desired.
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